Indian Buffet Process Dictionary Learning : algorithms
نویسندگان
چکیده
Ill-posed inverse problems call for some prior model to define a suitable set of solutions. A wide family of approaches relies on the use of sparse representations. Dictionary learning precisely permits to learn a redundant set of atoms to represent the data in a sparse manner. Various approaches have been proposed, mostly based on optimization methods. We propose a Bayesian non parametric approach called IBP-DL that uses an Indian Buffet Process prior. This method yields an efficient dictionary with an adaptive number of atoms. Moreover the noise and sparsity levels are also inferred so that no parameter tuning is needed. We elaborate on the IBP-DL model to propose a model for linear inverse problems such as inpainting and compressive sensing beyond basic denoising. We derive a collapsed and an accelerated Gibbs samplers and propose a marginal maximum a posteriori estimator of the dictionary. Several image processing experiments are presented and compared to other approaches for illustration.
منابع مشابه
Hierarchical Beta Processes and the Indian Buffet Process
We show that the beta process is the de Finetti mixing distribution underlying the Indian buffet process of [2]. This result shows that the beta process plays the role for the Indian buffet process that the Dirichlet process plays for the Chinese restaurant process, a parallel that guides us in deriving analogs for the beta process of the many known extensions of the Dirichlet process. In parti...
متن کاملLearning the Structure of Probabilistic Graphical Models with an Extended Cascading Indian Buffet Process
This paper presents an extension of the cascading Indian buffet process (CIBP) intended to learning arbitrary directed acyclic graph structures as opposed to the CIBP, which is limited to purely layered structures. The extended cascading Indian buffet process (eCIBP) essentially consists in adding an extra sampling step to the CIBP to generate connections between non-consecutive layers. In the ...
متن کاملThe Indian Buffet Process: An Introduction and Review
The Indian buffet process is a stochastic process defining a probability distribution over equivalence classes of sparse binary matrices with a finite number of rows and an unbounded number of columns. This distribution is suitable for use as a prior in probabilistic models that represent objects using a potentially infinite array of features, or that involve bipartite graphs in which the size ...
متن کاملSpectral Methods for Indian Buffet Process Inference
The Indian Buffet Process is a versatile statistical tool for modeling distributions over binary matrices. We provide an efficient spectral algorithm as an alternative to costly Variational Bayes and sampling-based algorithms. We derive a novel tensorial characterization of the moments of the Indian Buffet Process proper and for two of its applications. We give a computationally efficient itera...
متن کاملLearning invariant features using the Transformed Indian Buffet Process
Identifying the features of objects becomes a challenge when those features can change in their appearance. We introduce the Transformed Indian Buffet Process (tIBP), and use it to define a nonparametric Bayesian model that infers features that can transform across instantiations. We show that this model can identify features that are location invariant by modeling a previous experiment on huma...
متن کامل